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a b s t r a c t

High quality upsampling of sparse 3D point clouds is critically useful for a wide range of geometric
operations such as reconstruction, rendering, meshing, and analysis. In this paper, we propose a data-
driven algorithm that enables an upsampling of 3D point clouds without the need for hard-coded rules.
Our approach uses a deep network with Chamfer distance as the loss function, capable of learning the
latent features in point clouds belonging to different object categories. We evaluate our algorithm
across different amplification factors, with upsampling learned and performed on objects belonging
to the same category as well as different categories. We also explore the desirable characteristics of
input point clouds as a function of the distribution of the point samples. Finally, we demonstrate
the performance of our algorithm in single-category training versus multi-category training scenarios.
The final proposed model is compared against a baseline, optimization-based upsampling method.
The results indicate that our algorithm is capable of generating more accurate upsamplings with less
Chamfer loss.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

With the emergence of 3D depth sensing technology, point
cloud capture has become increasingly common in many applica-
tions involving shape digitization and reconstruction. While point
cloud quality and point density have a critical impact on the
subsequent digital design and processing steps, the large variety
of sensing technologies coupled with varying characteristics of
the object surfaces and the environment makes high-quality point
cloud capture a difficult task. As such, to aid in reconstruction,
digitally upsampling an input point cloud to produce a denser
representation that remains true to the underlying object is a very
desirable capability. However, it remains difficult to do so due to
the need to add information that does not exist in the input.

Given a point cloud, two common approaches to reconstruc-
tion involve direct triangulation, and patch or field regression.
Amenta et al. [1] introduce a reconstruction method based on the
three-dimensional Voronoi diagram and Delaunay triangulation.
In their algorithm, a set of triangles is generated based on the
sample points. Other approaches use interpolating surfaces. Alexa
et al. [2] demonstrate the idea of computing the Voronoi dia-
gram on the moving least squares (MLS) surface and adding new
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points at vertices of this diagram. Likewise, implicit models have
also been extensively used. Apart from classical Poisson, Wavelet
and radial basis functions [3], complex fitting strategies such as
edge-aware point set resampling (EAR) [4] have been explored.

Such methods are effective at reconstruction when the point
clouds are sufficiently dense. However, if the point clouds are
so sparse that key shape structures are missing or incomplete,
these methods are not likely to recover the missing details as
the smoothness between the sample points is usually assumed
for cost function minimization or regularization.

Recently, data-driven methods have been used toward re-
construction from point clouds. Remil et al. [5] present a new
approach that learns exemplar priors from model patches. Then
these nearest neighbor shape priors from the learned library
can be acquired for each local subset of a given point set. After
an appropriate deformation and assembly of the chosen priors,
models from the same category as the priors can be recon-
structed. Yu et al. [6] develop a neural network called PU-Net to
upsample an input point cloud. The network learns point patches
extracted/cropped from the point clouds. A joint loss function is
utilized in the training process which constrains the upsampled
points to be located on the objective surface and distributed
uniformly. To the best of our knowledge, PU-Net is the first
data-driven approach to point cloud upsampling. However, the
patch-based learning algorithm of PU-Net is not well suited to for
completion of partial models, especially at the full object-level as
well as part-level completion.
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In this work, we aim to learn an upsampling strategy using the
point clouds of entire objects rather than patches of individual
objects. Specifically, we explore how the information contained
in the objects belonging to the same categories impact the up-
sampling success. As an example of operating on the point clouds
of full objects, Qi et al. [7] developed a deep learning architecture
called PointNet that learns features of point clouds tailored for
classification and segmentation. Later, they introduce a hierar-
chical feature learning neural network named PointNet++ [8]
capable of extracting both global and local geometric features,
with very compelling results.

Achlioptas et al. [9] propose a generative point net model
based on PointNet. This generative model is designed to capture
the latent generative features of the point clouds used for training
using an encoder–decoder architecture. In their recent work,
the authors mention shape completion as one of the potential
applications of their network. Nevertheless, there is no further
exploration in upsampling conditions and the categories of ob-
jects. Recently, Yu et al. introduce EC-Net [10], which improves
the reconstruction of patch features near the sharp edges by
minimizing the point-to-edge distance. This work has inspired
our proposed approach involving a focus on the influence of
points near the edges on point cloud upsampling.

In this work, we build on and extend Achlioptas et al.’s work
to deploy an upsampling method designed for different object
categories and different upsampling amplification factors (AF).
Furthermore, we study the attributes of the input clouds that lead
to the most accurate upsampled point clouds. Finally, we expand
the encoded input point information to incorporate the vertex
normals obtained from the original mesh files and evaluate its
influence on the reconstruction performance. In our experiments,
models from seven categories in ShapeNetCore [11] are utilized
in the training and testing process. The results reveal that data-
driven upsampling of sparse point clouds can indeed benefit
significantly from categorical class information and moreover, the
richness in the data (as obtained through multi-class training)
results in high-quality upsampled models for a variety of object
categories.

The key contributions of our work are as follows:

• We propose a deep learning algorithm for learning point
cloud upsampling using entire object models (rather than
patches) as input;

• We demonstrate the effect of input point distribution on
upsampling quality;

• We demonstrate the performance of our approach with
diverse amplification factors and the flexibility of our algo-
rithm with single and multiple category training scenarios.

2. Technical approach

2.1. Network architecture

The neural network, depicted in Fig. 1, produces a dense
point cloud by taking as input a sparse point cloud of an object.
The input is an N × M matrix where N is the number of input
points, and M is the input dimension of one point, which is
either 3 or 6 with normal vectors. The encoder is composed of 1-
Dimensional (1D) convolutional layers with filter size 1, followed
by a batch normalization [12] layer and a ReLU [13]. In each layer,
the weights and bias of the convolutions are shared among all
the points. In the last layer of the encoder, maxpooling is applied
along the channel dimension to produce a latent feature vector.
Then the feature vector is passed through three fully connected
(fc) layers with two ReLU layers in between to complete the
reconstruction.

Fig. 1. Network Architecture. The output dimension of each layer is displayed
above the layer blocks. The five blue blocks represent five 1-D convolutional
layers with the output dimension of 64, 128, 128, 256, 128. Each 1-D convolu-
tional layer is followed by ReLU and batch-normalization layers. The three green
blocks represent three fully connected layers. A ReLU is placed between two fully
connected layers. Reshaping is employed in the last layer. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

2.2. Loss function

Chamfer distance (CD) [14] and Earth Mover’s distance (EMD)
[15] are two loss functions most commonly used in training deep
neural networks pertinent to point clouds.

The Chamfer distance is defined as

dCD(S1, S2) =

∑
x∈S1

min
y∈S2

∥x − y∥2
+

∑
y∈S2

min
x∈S1

∥x − y∥2,

where subsets S1, S2 ⊆ R3 are two point clouds. Chamfer Distance
is designed to measure the similarity of two point clouds. The
main idea is to find the nearest neighbor for each point in the
other point cloud (and vice versa) and sum the squared distances.

The Earth Mover’s distance is defined as

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

∥x − φ(x)∥,

where φ is a bijection of equal size subsets S1, S2 ⊆ R3. There
exists a unique and invariant optimal bijection φ for the point
pairs in two sets to move to each other. EMD is a measure of the
distance of two point clouds based on the unique bijection φ.

After comparison, we adopt the Chamfer distance as our loss
function primarily due to its simplicity and due to its superior
reconstruction capability reported by P. Achlioptas et al. [9], who
study the performance of shape completion when using CD or
EMD as loss functions respectively. Chamfer distance achieves
much higher accuracy with little loss in coverage in all evaluated
categories of objects. The accuracy is defined as the fraction of
predicted points that are within a given radius from any point in
the ground truth. The coverage represents the fraction of points
in the ground truth which are within the same given radius from
any predicted point. Further details are provided in Appendix A.

3. Experiments

3.1. Dataset and implementation

ShapeNetCore is a large-scale 3D CAD Dataset collected and
processed by Chang et al. [11]. The dataset consists of 55 shape
categories. The orientations of the mesh files are aligned. Also, the
models are size-normalized by the longest dimension. We select
seven categories from ShapeNetCore as our training data: cars,
airplanes, boats, benches, chairs, lamps and tables. These seven
categories each have more than 1000 models. The models from
these categories ranged from simple to complex, thereby allowing
a performance test of our approach. After selecting a balanced
training model set, we divided the data of each category with
train/validation/test sets of 85%-5%–10% split. Furthermore, we



W. Zhang, H. Jiang, Z. Yang et al. / Computer-Aided Design 112 (2019) 1–13 3

Fig. 2. Example results of the curvature-based subsampling strategy for the
input point clouds. (a) Ground truth point cloud. (b) Random subsampling. (c)
Curvature-based subsampling.

fix our test cases for all evaluation processes. For learning, we
train our neural network for approximately 2000 epochs using
the Adam optimizer [16] with a learning rate of 0.0005 and a
batch size of 50. For each category, the training ranges from 40
to 100 min using an NVIDIA GeForce GTX 1080 Ti GPU.

3.2. Data pre-processing

To prepare the point cloud data, for each object, we randomly
sample a point cloud on the original mesh polygons with 2048
points (larger polygons getting proportionally more samples).
Note that the 2048 points on these models were selected to
strike a balance between upsampled model complexity and com-
putational efficiency for the parametric studies discussed in this
study. With the insights arrived at with the study, the network
architecture can be altered to change the target number of points
in the upsampled models. In the subsequent experiments, we
take these point clouds as our high-resolution ground-truth data.
To study the influence of point distributions in the sparse, input
point clouds, we downsample each point cloud to 256, 512 and
1024 points using two approaches: Random subsampling (R)
or curvature-based subsampling (CB). These subsampled point
clouds serve as the input models that our approach aims to
upsample. The insight we attain at the end of the study allows
a determination of which of the two subsampling approaches
(R versus CB) is more suitable for creating accurate upsampled
models.

In Fig. 2, we show the results of the random subsampling and
the curvature-based subsampling. We follow the sampling meth-
ods in [8] and implement two relatively efficient and effective
methods to sample the point clouds. In light of the computa-
tional cost and consistency with [9], Monte-Carlo random sample

method is used to obtain uniformly distributed points. For curva-
ture sensitive sampling, we first compute the normal curvature
for each edge in the mesh based on [17]. Then, for each vertex, we
take the mean of the normal curvatures of all the edges connect-
ing to it as its curvature. When 2,048 points are sampled, each
point is assigned a curvature, which is the linear interpolation
of curvatures of the three vertices from the same polygon. Then,
input points are sampled from a distribution proportional to these
curvatures.

3.3. Experiment design

Single category training and inner-class evaluation To
demonstrate the effectiveness of our network, we conduct exper-
iments under various upsampling amplification factors including
2, 4 and 8. For each amplification factor, we input randomly dis-
tributed points and points sampled by curvature-based sampling
method respectively. Moreover, we develop another six cases
where normal information of the points is taken as additional
input. Overall, twelve cases are created for each category where
the best case will be picked for further experiments.

Single category training and inter-class evaluation The re-
sults of this experiment demonstrate the ability to perform up-
sampling in previously unseen categories. Models are trained
by only one input category and evaluated on the remaining six
categories. We apply the condition under which the network
models perform best in the first experiment.

Multi-category training and evaluation We randomly pick
1000 models from each category and train our network on the
extracted 7000 point clouds. Then the network is evaluated on
the test cases from each category separately. This experiment
aims to study the performance of our network when trained with
all available object categories but tested on models that were
previously unseen (though still belonging to one of the seven
object categories).

4. Results and discussions

4.1. Inner-class evaluation

As stated in Section 3.3, we conduct parametric studies with
twelve different cases to evaluate the upsampling performance of
our algorithm. The resulting average test Chamfer losses for each
category are shown in Table 1. The best performances for a given
amplification factor of each category is shown in bold. We report
the accuracy and coverage values as well in Appendix A, which
follow a pattern similar to that shown in Table 1.

Fig. 3. Sample reconstructions from our algorithm with different average test Chamfer loss (ATCL). (a) ATCL= 0.1×10−3 . (b) ATCL= 0.5×10−3 (c) ATCL= 1.0×10−3

(d) ATCL= 2.0 × 10−3 (e) ATCL= 5.0 × 10−3 . The color means the distance between a point in the upsampled point cloud and its nearest point in the ground truth
point cloud.
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Fig. 4. Comparison between our algorithm and EAR method. (a) Input point cloud. (b) Outcome from EAR. (c) Outcome from our algorithm. (d) Ground truth. The
color means the distance between a point in the upsampled point cloud and its nearest point in the ground truth point cloud.

Fig. 5. Comparison between our algorithm and PU-Net. (a) Input point cloud. (b) Outcome from PU-Net. The Chamfer Loss for the upper one is 0.000263 and the
lower one is 0.000401. (c) Outcome from our algorithm. The Chamfer Loss for the upper one is 0.000150 and the lower one is 0.000406. (d) Ground truth. The color
means the distance between a point in the upsampled point cloud and its nearest point in the ground truth point cloud.

Fig. 6. Comparison between our algorithm and PU-Net on point cloud completion. (a) Input point cloud. (b) Outcome from PU-Net. The Chamfer Loss is 0.000779.
(c) Outcome from our algorithm. The Chamfer Loss is 0.000212. (d) Ground truth. The color means the distance between a point in the upsampled point cloud and
its nearest point in the ground truth point cloud.

Fig. 7. Sample results for shape morphing between the point clouds of a car and a boat.

Among all the best cases, the largest test Chamfer loss is less
than 1.7×10−3 (minimum 0.285×10−3). When the amplification
factor is doubled, the largest increase in Chamfer loss is around

8%. Based on Fig. 3, the visualizations of reconstruction quality
across different Chamfer loss values, we conclude that over-
all our upsampling algorithm performs across different objects
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Table 1
Evaluation of networks trained on seven categories respectively under twelve conditions. The table shows the evaluation results of single category training and
inner-class evaluation described in Section 3.3. The lowest test Chamfer loss for each amplification factor is marked in bold. The table indicates that the input point
clouds that are random outperform the point clouds that have curvature-based samples in all cases where the amplification factor is 4 or 8. But in four of the seven
categories, curvature-based sampled point clouds result in better reconstruction quality at AF = 2. The corresponding coverage and accuracy results can be found in
Tables A.5 and A.6.

AF 2 4 8

Sample R CB R CB R CB

Normal No Yes No Yes No Yes No Yes No Yes No Yes

Category Test Chamfer loss (×10−3)

Airplane 0.285 0.301 0.289 0.311 0.294 0.316 0.313 0.343 0.319 0.340 0.356 0.402
Bench 0.814 1.154 0.771 2.480 0.822 1.089 0.940 1.297 0.865 1.273 0.996 1.391
Boat 0.923 1.325 0.899 1.410 0.971 1.359 1.008 1.449 1.000 1.420 1.043 1.206
Car 0.720 0.751 0.721 0.738 0.729 0.763 0.767 0.806 0.755 0.794 0.816 0.866
Chair 1.322 1.387 1.335 1.367 1.353 1.388 1.792 1.868 1.414 1.462 1.933 2.040
Lamp 1.530 2.039 1.528 2.161 1.571 2.028 1.657 2.163 1.635 2.254 1.824 2.665
Table 1.185 1.196 1.181 1.196 1.194 1.219 1.389 1.418 1.231 1.258 1.549 1.593

Table 2
Inter-class evaluation of the networks trained on single category and evaluated on another category. Randomly distributed points are used during training as input
point clouds. AF = 8. The table shows the results of single category training and inter-class evaluation described in Section 3.3. The average test loss for each model
increases.

Training category Airplane Bench Boat Car Chair Lamp Table

Evaluation category Test Chamfer loss (×10−3)

Airplane \ 24.321 102.293 23.312 9.943 3.530 11.599
Bench 77.826 \ 35.462 44.513 1.519 6.089 1.649
Boat 3.953 11.938 \ 4.273 4.933 2.067 10.881
Car 5.152 5.406 1.543 \ 2.601 3.163 4.418
Chair 30.484 5.982 20.687 17.633 \ 11.387 4.754
Lamp 12.609 35.19 18.575 56.709 8.846 \ 12.545
Table 72.059 5.909 67.493 47.852 4.883 17.199 \

Table 3
Evaluation of the network trained on a balanced training set involving all seven categories. The table shows the results of multi-category training and evaluation
described in Section 3.3. The upsampling condition is the same as Table 1. Compared with the results in Table 2, this network outperforms all the single-category
training networks. The Chamfer loss on the bench and boat models become less than those in Table 1. In addition, the average test loss rises from 1.031 to 1.205
when employing this multi-category training.

Evaluation category Airplane Bench Boat Car Chair Lamp Table

Test Chamfer loss (×10−3) 0.529 0.825 0.892 0.854 1.807 1.888 1.644

Fig. 8. Test Chamfer loss for our trained networks as a function of α. α ∈

[0, 1], that represents the fraction of points subsampled using the curvature-
based strategy relative to all subsampled points (the rest being the randomly
subsampled points). As shown, when α = 0.1 or α = 0.2, both provide higher
upsampling quality over the randomly sampled points (α = 0). As seen, with
approximately 20% of the subsampled points coming from the curvature-based
approach, the average Chamfer loss is minimized.

and multiple amplification factors. Further results are shown in
Appendix C.

An interesting observation is that input point clouds that
are random outperform point clouds that have curvature-based
samples in all cases where the amplification factor is 4 or 8. But
in four of the seven categories, curvature-based sampled point
clouds result in better reconstruction quality at AF = 2. Since
Qi et al. [7] mention that the points contributing more to the
object features usually lie around the edges and outlines of the
object, we originally expected points clouds subsampled based on
curvature to be more effective at accurate upsampling.

A possible reason is that the input points congregate too much
on the edges so that the resulting point cloud is nonuniform. This
nonuniformity may decrease the error between the upsampled
point cloud and the ground truth since features like sharp edges
or high curvature regions require denser point distributions for
the features to be faithfully captured. Meanwhile, it inevitably
gives rise to the error distance from ground truth to prediction.
Because the total number of points is fixed, there must be fewer
points in the flat regions. In cases where the amplification factor
is small, the side effect of this nonuniformity is not distinctly
revealed since the total number of points is still adequate to
cover the flat regions. As AF becomes larger, the unbalanced point
distribution eventually results in a dominant threat to the upsam-
pling performance. To verify our hypothesis explained above, a
hybrid sampling method with various combining ratios is intro-
duced in Section 4.3. However, as the results demonstrate, normal
information does not help to improve the upsampling quality in
all the cases.
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4.2. Inter-class and multi-class evaluation

To further explore the performance of our approach with
single-category and multi-category training, we conduct a case
study with AF = 8, primarily because the largest variance among
categories can be observed in Table 1 under this condition. Ad-
ditionally, based on the results of Table 1, all the input point
clouds are sampled from uniform distributions without normal
information. Finally, each trained network is evaluated on test
cases from the other six categories respectively. The resulting test
Chamfer losses are displayed in Table 2.

Expectedly, the average loss increases because the training
does not see model features in the other categories used in the
evaluation. Nonetheless, evaluation categories that are contex-
tually proximate to the training categories interestingly tend to
perform relatively better in the inter-class upsampling (car vs.
boat, chair vs. bench, etc.). Surprisingly, the network trained on
chairs outperforms the network trained on benches among all the
six evaluation categories. In fact, the models in the bench cate-
gory had only five major subtypes that were largely consistent
in style, whereas the chair database had 23 different subtypes
(armchairs, folding chairs, recliners or even wheelchairs). The
richness in the chair models results in the least average Chamfer
loss (4.877 × 10−3). Therefore, we can conclude that greater
abundance in training sets can improve the generality of network
model.

Finally, we trained a single network that uses all seven cate-
gories (balanced) for training. Table 3 shows the performance of
this network. Compared with the results in Table 2, this network
outperforms all the single-category training networks as it learns
a richer set of latent features emanating from different categories.
Evaluation Chamfer losses on the bench and boat models become
even less than those in Table 1. In addition, the average test loss
rises merely from 1.031 to 1.205 when employing this multi-
category training. To illustrate the category information learned
from multi-category learning, we utilize the feature vectors gen-
erated by this network for shape morphing. A sample result is
given in Fig. 7. The intermediate feature vectors are obtained by
linearly interpolating the feature vectors obtained from the point
clouds of a car and a boat.

4.3. Further discussion

Finally, we test a hybrid subsampling method designed to
provide a potentially superior input point cloud for upsampling.
For this, we introduce a new parameter, α ∈ [0, 1], that repre-
sents the fraction of points subsampled using the curvature-based
strategy relative to all subsampled points (the rest being the
randomly subsampled points). We create 11 groups of input point
clouds from the airplane category with AF = 8 and an increment
of 0.1 in α each time. The test cases are identical to those we
use in Table 1. Fig. 8 shows the relationship between α and
the corresponding test Chamfer loss. As shown, when α = 0.1
or α = 0.2, both provide higher upsampling quality over the
randomly sampled points (α = 0). As seen, with approximately
20% of the subsampled points coming from the curvature-based
approach, the average Chamfer loss is minimized. This implies
that there exists a trade-off between using purely curvature-
based versus purely random subsampled points, with the hybrid
approach providing a more desirable outcome. Note that as α
increases, the input point cloud becomes much less uniform, and
eventually, the improvement resulting from the addition of edge
and feature-rich regions cannot make up for the lack of points in
the flat (low curvature) regions. The accuracy and coverage values
reported in Appendix A further verify this inference.

As a comparison with the model we obtained using this hybrid
subsampling model, we utilize EAR [4], a state-of-the-art method

for optimization-based point cloud upsampling, toward the same
task. Fig. 4 shows that our algorithm provides more precise up-
sampling results over the EAR method. Since the number of points
is small, the EAR method only finds only some of the major edges
and uses most of the points around those regions.

We also compare our method with a patch-level learning
method, PU-Net [6]. In Fig. 5, we show the reconstruction results
based on our method and PU-Net. Judging from the Chamfer loss,
our method and PU-net are compatible. However, as shown in
Fig. 6, our method outperforms PU-Net on point cloud shape
completion. In this experiment, we remove half of the right wing
in the given input airplane point cloud. PU-Net is only able
to add more points around the existing points without wider
shape completion. By contrast, our method generates the missing
part through upsampling. Shape completion in this way can be
advantageous in practical deployment especially for point clouds
obtained through digital scanning, where occlusion can pose a
major challenge.

5. Conclusions

This work presents a deep learning algorithm aiming at up-
sampling a sparse point cloud with a prescribed amplification fac-
tor determined by the user. Instead of using human defined priors
or heuristics, we exploit the deep networks’ ability to extract the
latent features for upsampling for various object categories. Then
these latent features assist the point cloud upsampling so that a
common global feature set learned from a single or a multitude
of object categories can be naturally utilized.

We successively explore the effect of two different distribu-
tions for input point cloud sampling. Based on the outcomes, a
further parametric study on the hybrid sampling ratio for points
produced by these two sampling strategies is conducted to iden-
tify the benefit of using feature-sensitive points for upsampling.
As this ratio increases, points sampled on the high-curvature
regions of an object are capable of better capturing the critical
feature-rich regions. Meanwhile, a reduction of the point density
in areas far from the feature regions causes a scarcity of points
in these areas during upsampling, which expectedly decrease
the accuracy in the current loss function. Nonetheless, in real
applications, fewer points in the flat, featureless regions may
not be a severe issue, since by and large most current surface
reconstruction methods assume smooth surfaces between the
sampled points. As such, our future work will explore alternative
metrics to assess the resulting upsampled point cloud so as to
enable non-uniform but high quality upsampled models.

6. Limitations and future work

Our current model is trained on point clouds sampled from
ShapeNetCore. An inspection of the available models reveals that
parts of the meshes have geometric shortcomings such as open
disconnected polygons or double-sided surfaces. These flaws lead
to incorrect normal calculations, which is a potential reason why
the normal information did not contribute positively to the up-
sampling quality. An alternative way is to compute normal vec-
tors using the available vertex coordinates through local patch
fitting, which is to be explored in the future.

Another characteristic of our approach is that while it per-
forms well at reconstructing the global features that are fre-
quently occurred in the category, the upsampling quality dimin-
ishes for features that are rarely encountered during training. To
address this problem, we plan to investigate the possibility of
replenishing our network with latent features learned at the local,
patch scale.

Finally, our tests thus far have concentrated on models of man-
made, engineered objects. Whether the same approach general-
izes well for object categories consisting of natural or biological
models is the subject of future work.
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Table A.4
Results of accuracy and coverage for networks as a function of α.

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy (%) 80.25 80.34 80.34 80.24 80.21 79.96 79.78 79.69 79.65 79.55 79.12
Coverage (%) 83.05 82.92 83.03 82.81 83.02 82.89 82.53 82.55 82.45 82.35 81.55

Table A.5
Accuracy of networks trained on seven categories respectively under twelve conditions.

AF 2 4 8

Sample R CB R CB R CB

Normal No Yes No Yes No Yes No Yes No Yes No Yes

Category Accuracy (%)

Airplane 98.94 98.85 98.94 98.69 98.83 98.6 98.62 98.26 98.48 98.19 98.6 97.45
Bench 92.53 89.36 92.8 66.61 92.57 89.78 91.98 88.71 92.1 89.03 91.47 87.73
Boat 90.1 82.3 89.79 81.71 89.62 82.76 89.09 81.47 89.31 82.16 87.35 79.98
Car 91.94 91.45 91.91 91.77 91.83 91.24 91.18 90.45 91.39 90.56 90.53 89.64
Chair 80.17 79.11 80.02 79.63 79.7 78.96 74.56 73.6 78.98 78.33 72.91 70.94
Lamp 77.41 71.15 77.47 70.33 76.65 70.96 75.95 69.79 75.63 68.06 73.88 64.02
Table 87.15 86.81 86.87 86.58 86.79 86.35 85.13 84.63 86.22 85.87 83.79 83.3

Table A.6
Coverage of networks trained on seven categories respectively under twelve conditions.

AF 2 4 8

Sample R CB R CB R CB

Normal No Yes No Yes No Yes No Yes No Yes No Yes

Category Coverage (%)

Airplane 99.05 98.81 98.93 98.63 98.9 98.58 98.54 98.06 98.43 98 98.58 96.74
Bench 90.3 84.99 90.96 73.82 90.26 85.74 89.31 83.37 89.23 82.81 88.09 82.1
Boat 91.74 84.92 91.89 84.19 91.19 84.24 90.6 82.65 90.74 83.58 89.27 81.78
Car 94.64 93.83 94.38 94.16 94.43 93.53 93.46 92.68 93.94 92.71 92.59 91.42
Chair 81.26 79.71 80.51 80.05 80.48 80.18 76.76 75.52 79.25 78.5 75.02 73.48
Lamp 84.44 76.97 84.72 76.84 84.45 78.28 83.2 76.8 83.78 75.77 81.95 71.94
Table 81.4 81.15 81.39 81.04 81.09 80.72 79.16 78.41 80.64 79.97 77.17 77.07

Fig. B.9. Ten randomly selected benches in the dataset.
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Appendix A. Accuracy and coverage

We use the same point cloud upsampling metrics introduced
in [9] to illustrate the performance of our algorithm. They are:
(a) Accuracy: the fraction of the predicted points that are within
a given radius (ρ) from any point in the ground truth point cloud
and (b) Coverage: the fraction of the ground-truth points that are
within ρ from any predicted point. Referring to Tables A.5 and
A.6, as a supplement to Table 1, the accuracy and coverage values
are reported with ρ = 0.03.

We explain the principle behind Fig. 8 in Section 4.2. Here,
the accuracy and coverage values are reported in Table A.4. Since

accuracy and coverage are both high (98.5%) and close in both
cases when ρ = 0.03, we use ρ = 0.015 in this case.

Appendix B. Benches vs. Chairs

To demonstrate the variance in the chair and bench dataset,
we randomly select 10 models in each category. The textured
models are shown in Figs. B.9 and B.10. Larger shape variation
in the chair models can be observed.

Appendix C. Upsampling results

Further upsampling results are shown in Figs. C.11–C.15. In all
cases, the left column is the input sparse point cloud, the middle
column is our output, and the right column is the ground truth.
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Fig. B.10. Ten randomly selected chairs in the dataset.

Fig. C.11. Sample results (Part I). (a) AF = 4, R, ST. (b) AF = 8, R, ST. (c) AF = 2, R, ST. (d) AF = 4, R, ST. (e) AF = 2, CB, ST.
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Fig. C.12. Sample results (Part II). (a) AF = 8, R, ST. (b) AF = 2, CB, ST. (c) AF = 8, R, ST. (d) AF = 4, R, ST. (e) AF = 8, R, ST.



10 W. Zhang, H. Jiang, Z. Yang et al. / Computer-Aided Design 112 (2019) 1–13

Fig. C.13. Sample results (Part III). (a) AF = 8, CB, ST. (b) AF = 2, R, ST. (c) AF = 2, R, ST. (d) AF = 8, R, ST. (e) AF = 4, R, ST.



W. Zhang, H. Jiang, Z. Yang et al. / Computer-Aided Design 112 (2019) 1–13 11

Fig. C.14. Sample results (Part IV). (a) AF = 4, R, ST. (b) AF = 8, R, ST. (c) AF = 8, R, ST. (d) AF = 2, CB, ST. (e) AF = 4, R, ST.



12 W. Zhang, H. Jiang, Z. Yang et al. / Computer-Aided Design 112 (2019) 1–13

Fig. C.15. Sample results (Part V). (a) AF = 8, R, ST. (b) AF = 8, R, MT. (c) AF = 8, R, ST. (d) AF = 8, R, MT.

Details for each case are listed in the figure caption. (R:
Random sampling; CB; Curvature-based sampling; ST: Single-
category training; MT: Multi-category training. In all cases, we
do not use normal information.)
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