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The ability to track human operators’ hand usage when
working in production plants and factories is critically im-
portant for developing realistic digital factory simulators as
well as manufacturing process control. We propose an in-
strumented glove with only a few strain gauge sensors and
a micro-controller that continuously tracks and records the
hand configuration during actual use. At the heart of our
approach is a trainable system that can predict the fourteen
joint angles in the hand using only a small set of strain sen-
sors. First, ten strain gauges are placed at the various joints
in the hand to optimize the sensor layout using the English
letters in the American Sign Language as a benchmark for
assessment. Next, the best sensor configurations for three
through ten strain gauges are computed using a support vec-
tor machine classifier. Following the layout optimization,
our approach learns a mapping between the sensor read-
outs to the actual joint angles optically captured using a
Leap Motion system. Five regression methods including lin-
ear, quadratic and neural regression are then used to train
the mapping between the strain gauge data and the corre-
sponding joint angles. The final proposed model involves
four strain gauges mapped to the fourteen joint angles using
a two-layer feed-forward neural network.

1 Introduction
Recent advances in 3D data acquisition and tracking

technologies have enabled a rapid digitalization of large pro-
duction plants and factories in various formats such as point
clouds and triangle soups (a set of unorganized and dis-
connected triangles). Acquired data is utilized for the gen-
eration of digital twin of manufacturing processes, which
can be used to simulate and optimize work-cell layouts
while improving human operator effectiveness, safety and
ergonomics. Although existing process simulation tools can
make use of digitized factory environments in the form of
point clouds, these tools still require a labor intensive manual
configuring of the simulation environment such as how hu-
man workers interact with the assembly tools and how they
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manipulate different objects during manufacturing.

In this work, we address the problem of acquiring an ac-
curate 3D model of human hand usage using an instrumented
glove with only a few strain gauge sensors. Once available,
this data can be incorporated directly into factory environ-
ment simulators, thereby alleviating the need for manual pro-
cess parameter tuning. Specifically, we envision that a set
of instrumented gloves will be utilized by human workers
while they are performing their jobs in a real factory envi-
ronment and the proposed wearable device will enable auto-
matic data collection for understanding how human workers
interact with their surroundings.

Towards this goal, we develop a wearable device that
is able to track and record human hand poses relative to the
wrist over an extended period of time. The main advance
in this work is the development of methods, algorithms, and
a prototype device that use as little as four strain gauges to
predict in real-time all the fourteen joint angles in the fin-
gers with an average RMSE (root-mean-square error) of 3.6◦.
Given a target number of strain gauges, we begin by identify-
ing the best layout configuration of these sensors on the outer
surface of the human hand using the classification perfor-
mance on the English letters in American Sign Language as
a way to assess candidate layouts. Next, we establish a train-
ing protocol for hand pose tracking wherein a new user wears
and trains the glove for a duration of 3 minutes. The purpose
of this training is to learn a mapping from the sensor readouts
to the fourteen joint angles, where the joint angles are cap-
tured using a Leap Motion depth sensor as the ground truth.
This approach enables high-fidelity benchmark poses to be
gathered during the training phase using optical tracking,
while alleviating the need for optical tracking during actual
use (hence only requiring strain sensing). The results of our
experiments involving a varying number of strain gauges as
well as regression algorithms involving linear least squares,
quadratic least squares and neural regression are also com-
pared. Our studies suggest that an instrumented glove with
four strain gauges that uses neural regression to be the best
compromise between tracking accuracy and device simplic-
ity.



Our main contributions are:

1. A method to identify the best strain sensor layout for
human hand pose estimation.

2. A training algorithm between optically captured hand
poses and a lower dimensional strain data for high fi-
delity hand pose tracking.

3. A wearable glove with a limited number of strain sen-
sors for real-time hand pose tracking.

2 Related Work
Our work builds on hand gesture recognition and track-

ing systems with a specific focus on factory environment use.
In this section, we review hardware systems and computa-
tional algorithms of two main hand tacking approaches, (1)
wearable sensor systems, (2) vision based techniques. Ad-
ditionally, we discuss commercially available hand tracking
systems in relation to our specific problem.

Wearable devices typically integrate strain, acceleration,
and force sensors combined with classifiers for hand pose
recognition [1–3]. Compared to these works, our aim is to
track the full hand pose rather than a set of discrete hand ges-
tures. Kramer [1] present a hand gesture recognition system
using an instrumented glove with approximately 20 sensors
where each sensor is comprised of two strain gauges. In our
approach, we aim to minimize the number of strain sensors
for ease of usability and fabrication. The musculoskeletal
system of the hand allows the prediction of hand movement
(all 14 joints) using fewer number of sensors due to a cou-
pling between the joint angles. In our approach, we exploit
this coupling to achieve accurate tracking using only a few
sensors (3-5) with a performance similar to 10 strain gauges.
Note that this approach requires a special attention due to the
mapping from low dimensional sensor data to a high dimen-
sional joint angle space (Section 3.3.2).

Lei et al. [3] presents an accelerometer-based method to
detect 12 predefined index finger movements of stroke pa-
tients during rehabilitation therapies. The study reports ges-
ture recognition accuracy varying form 59% to 87% and con-
tinuous tacking of one finger on the 12 classes. One draw-
back of accelerometer-based approaches is that these sensors
are rigid pieces. In contrast, strain gauges are inherently
slimmer, lighter and flexible allowing them to better conform
to natural hand poses. Federico [2] demonstrate a glove de-
sign with conductive mixture patterns as sensors. While the
above study presents very high accuracy at first wear, sensor-
based approaches are sensitive to hand sizes and repetitive
wears. In our approach, we overcome this issue with a short
training session using a depth sensor in a controlled environ-
ment.

Vision-based approaches have been widely used in ges-
ture recognition and motion tracking applications. These
vision-based approaches have been demonstrated using
many different hardware setups including optical or infrared
cameras [4, 5], RGB cameras and depth sensors [6, 7]. Gi-
oliu [8] present an SVM based gesture recognition algorithm
using infrared cameras, RGB cameras and depth sensors, re-

porting up to 92% accuracy. Real-time hand tracking has
been studied in [22]. However, vision based techniques are
non-wearable and non-portable settings which are not fea-
sible in an industrial environment. Vision based techniques
are also sensitive to environment conditions such as lighting
which may change during an operation in a factory. More-
over, vision based techniques are not suitable for hand track-
ing while holding other objects due to occlusions.

Posture recognition systems for other body parts such as
the arm [16], leg [17], and body [18, 19] have also been ex-
tensively studied. In principle, these works share techniques
and goals similar to that of hand tracking. Yet, the hand
tracking problems require higher resolution sensor readings
as well as smaller hardware restrictions for portability.

There exists a growing body of commercial hand gesture
recognition and tracking systems. Proglove [9] is a wearable
device that demonstrates the need for tracking operations in
a factory environment. Proglove is designed to scan and dis-
play the items which are being touched or handled for in-
dustrial logistics, hence is not concerned with hand pose es-
timation and tracking. Gest (accelerometer-based) and Myo
(acoustic-based) [13, 14] are wearable devices that focus on
hand gesture recognition to control computers and machines.
Compared to these devices, our aim is to develop a wearable
system that can be incorporated into traditional work gloves
with whole hand tracking capabilities. Cyber Glove [10] is
a motion capture device equipped with 22 sensors for full
hand tracking. In contrast, understanding redundancies and
minimizing the number of sensors is key in our approach to
enable development of a comfortable and affordable glove
system. In addition, we introduce a training approach for
personalized calibration of glove systems.

Leap Motion and Kinect [13, 14] are vision-based hand
tracking devices primarily for virtual reality gaming. They
require external devices like cameras to be placed facing the
tracked objects. Such non-portable settings requiring optical
sensors are not feasible in our target context. However, these
approaches are very useful for training and calibration pur-
poses. As such, we use a Leap Motion system for the initial
mapping of strain sensor data to the joint angles. By com-
bining the strain sensor based tracking with the vision-based
pretraining, we can monitor hand poses even when the hand
is occluded holding an object and we can quickly train the al-
gorithms for accurate personalized tracking. To our knowl-
edge, our study is the first to focus on real-time hand pose
tracking with or without objects in hand using only a few
strain sensors.

3 Technical Approach
In this paper, our objective is hand pose tracking using a

simple and portable hardware setup and develop algorithms
that address our specific challenges. We divide our technical
discussions into two parts. First, we discuss the hardware
design and explain our algorithms for choosing informative
sensor placements. Second, we describe the hand tracking
protocol and the training procedure for personalized tracking
that captures the hand size and a possible initial deformation



of the strain sensors.

3.1 Hardware Design and Initial Sensor Layout
As shown in Figure 1a, there are 14 joints in the hand.

Our approach aims to track the angular deformations at these
joints during the hand’s actual use. For our prototype, we
choose a latex glove in order to achieve a tight fit with the
hand as a way to increase strain readout fidelity. For the ini-
tial strain gauge placement, we use 10 strain gauges as shown
in Figure 1b. We observe that the motion of the tip joints (J5,
J8, J11, J14) are strongly coupled with the mid joints (J4,
J7, J10, J13) at each finger making two of these joints on the
same finger difficult to move independently. Based on this
observation, we place only two sensors per finger, resulting
on 10 total sensors (S1-S10).

3.1.1 Hardware Setup
For the prototype, 10 strain gauges (KFH-20-120-C1-

11L1M2R, Omega) are attached to a medium-sized Latex
glove (Microflex Diamond GripTM, ULINE) using double-
sided tape. The glove is worn by a human subject and the
hand is laid flat on a flat surface prior to attaching the sen-
sors as shown in Figure 1b. This configuration simply es-
tablishes a strain-free datum for the sensor network. Any
subsequent hand motion is registered via the tensile or com-
pressive strain readouts. Once the sensors are attached, this
particular glove is used by all human subjects without chang-
ing the sensor locations, with user-specific training prior to
the use of the glove as will be discussed in Section 3.3.

Fig. 1. (a) Fourteen joints in the hand. (b) Ten strain sensor layout
on a latex glove.

As shown in Figure 2, we use an Arduino microcon-
troller board for the strain readouts with a Wheatstone bridge
amplifier (INA125P-ND, Texas Instruments), whose output
is then channeled to the analog port of the Arduino Mega
Board to register the 10 strain gauges.

Fig. 2. The schematic design of hardware setup (1 channel).

Fig. 3. The hand gestures used in our sensor selection study. P0
corresponds to neutral hand pose that serves as a calibration point.
P1 to P13 are the first 13 letters (A-M) in American Sign Language.
Image courtesy Dr. Bill Vicars at Lifeprint.com.

3.2 Data Collection and Sensor Layout Optimization
In this section, we explain the data collection and sensor

layout selection process to determine which sensor config-
urations provide the highest information gain as measured
through a gesture classification system. This process is re-
peated for a range of target sensor numbers (3 through 10
sensors). For each target number of sensors, we identify
the best strain gauge choices using the classification perfor-
mance on the English letters in American Sign Language
(ASL) as a way to assess the candidate sensor choices (Fig-
ure 3). Toward this goal, three users (two males, one female)
perform the static gestures for the first 13 letters of the ASL
while wearing the instrumented glove. For each user, pose 0
serves as the neutral calibration point to zero all sensor read-
outs prior to each trial. In each iteration, the user presents
pose 1 through pose 13 while holding each pose for approx-
imately 10 seconds. The sensor readouts are recorded at ev-
ery 100 milliseconds. Each user repeats the experiment for
the second time by taking off the glove and wearing it again.
Following data collection, the transition periods between the
thirteen poses (the leading and trailing two seconds for each
pose) are removed.

Next, the data obtained from the three users is aggre-
gated into a large set, separated into two bins: First time
wear (all users aggregated) and second time wear (again, all



Table 1. Recognition accuracy of the best five sensor configurations
using three strain gauges.

Configuration
Training

Accuracy(%)
Test

Accuracy(%)

S5,S8,S9 98.29 63.44

S5,S6,S8 95.96 59.56

S5,S6,S9 93.11 58.72

S6,S8,S9 90.90 57.04

S7,S8,S9 94.02 50.80

users aggregated). The first time wear data is used for train-
ing, and is further broken into 10-fold training and validation
sets. For each target number of sensors, we use a multi-class
support vector machine (SVM) with cross validation to de-
termine the strain gauge combinations that yield the highest
user-independent recognition accuracy on the ASL test.

Table 1 shows the recognition accuracy on the ASL data
for sensor configurations consisting of only three sensors
(top 5 of C

(10
3

)
choices). The training accuracy (trained on

first time wear data) reports the average of the validation runs
for each configuration, while the test accuracy reports the re-
sults on the test set (second time wear data). The fall-off
between the training accuracy and test accuracy mainly re-
sults from the misalignment among different wearings. As
shown, S5, S8 and S9 form the best 3-sensor configuration.

Table 2 summarizes the best sensor choices as a function
of the target number of strain gauges.

Table 2. Best sensor configuration for each target number of strain
gauges (3 to 9).

No. of target SGs Best Configuration

3 S5,S8,S9

4 S6,S7,S8,S9

5 S5,S6,S7,S8,S9

6 S2,S4,S5,S7,S8,S9

7 S1,S2,S4,S5,S7,S8,S9

8 S1,S2,S3,S5,S6,S7,S8,S9

9 S1,S2,S4,S5,S6,S7,S8,S9,S10

3.3 Hand Tracking
After we establish the optimal sensor choices, next we

describe the hand tracking process. For hand tracking, the
key need is to map the strain sensor readouts to the fourteen
joint angles through a training protocol, and use this map as
a way to predict the hand pose during actual use. However,
the main challenge is in the prediction of the high degrees
of freedom joint angles from a fewer number of sensor read-
outs.

3.3.1 Training for Pose Tracking: Data Collection
For training, we establish a map between the strain sen-

sor readouts and the joint angles with the help of the Leap
Motion depth sensor (Figure 4). This system allows the cap-
ture of all fourteen joint angles in a controlled environment,
thus establishing the ground truth for the strain to joint angle
mapping.

During training, the users move their hands through ran-
dom poses while wearing the instrumented glove. The hand
motion should be slow enough for strain sensor readings to
stabilize against the Leap Motion data capture. Note that this
stabilization is only needed during training to match strain
sensor readings to Leap Motion data. Hence, no speed re-
striction is present once the system is trained.

Fig. 4. Optical training process using the Leap Motion system.

Figure 5 shows the amount of variation in each of the
fourteen joint angles (abs(Anglemax−Anglemin)) as captured
through the Leap Motion system. These variations are im-
portant to note as they will allow an assessment of the RMSE
values reported in Section 4.

A new user wears and trains the glove for a duration
of 3 minutes. During this phase, the strain readouts and
the joint angle readouts are captured at different frequencies,
and moreover, the sampling may be non-uniform within each
channel. These two input streams are thus registered by ac-
quiring them through the same computer and using the sys-



Fig. 5. The range of the joint angles captured through the Leap Mo-
tion system.

tem clock as a reference for registration. This produces a
large set of registered strain versus joint angle pairs (approx-
imately between 1500 to 1700 pairs) that are used for the
next step of training. Note that this training is repeated for
each new user to accommodate differences in hand shapes
and sizes.

3.3.2 Training Algorithms
To map the strains to the joint angles, we use linear re-

gression, quadratic regression, and feed-forward neural re-
gression. Note that, for these regression models, the map-
ping is from k strain gauges to the 14 joint angles (where k
< 14).

Linear Regression: For linear regression with bias, this
map can be represented as follows:

ST = J (1)

where S is the N × (k+ 1) strain data matrix (with bias), N
is the number of training data points, k is the number of tar-
get strain gauges. J is the corresponding N × 14 joint angle
matrix encoded in a similar way. T is the desired mapping
matrix. We use a linear least squares solver with L2 regular-
ization to obtain the map T.

Quadratic Regression: Quadratic regression follows a
structure similar to that of the linear regression model, except
the width of S and the height of T are increased to account for
the quadratic terms, while using the same number of training
data as before.

Support Vector Regression The Support Vector Re-
gression (SVR) uses the same principles for regression as
the Support Vector Machine (SVM) for classification. In our
case, we use the Gaussian kernel as the kernel function.

Random Forest Regression Random forest regression
is an ensemble learning method for regression that operates
by learning a multitude of decision trees whose predictions
consolidated into a single prediction [22]. We use 100 deci-
sion trees (choice determined empirically) to learn the map-
ping from the strain sensors to the joint angles.

Neural Regression: Lastly, we build a feed-forward
neural network to estimate T. The network admits the strain
sensor data as input and estimates the joint angle data on the

output. We train various neural networks with different com-
plexities. Both single and double layer networks are tested,
with the number of hidden nodes in each layer ranging from
10,20, · · · ,50. The sigmoid activation function is used in the
hidden layers. Each network is trained three times and is
assessed based on the average RMSE.

4 Results and Discussions
In all of our experiments, we trained our algorithms with

90% of shuffled data and tested it with the remaining 10%.

4.1 Neural Network Optimization
We conducted parametric studies to identify the best per-

forming neural network structure. For a single hidden layer,
we varied the number of hidden nodes from 5 to 50 with an
increment of 5. In all cases, the training continues until an
increase in the validation error is observed. The resulting
average RMSE values (over different numbers of target in-
put sensors) corresponding to the different number of hidden
layer nodes is shown in Figure 6. We deem 15 hidden layer
nodes to be a good compromise between network complexity
and accuracy.

Fig. 6. RMSE for single hidden layer neural networks as a function
of hidden nodes.

Similarly, a two hidden layer network was also explored.
Here, the number of hidden layer nodes in the first and sec-
ond hidden layers are varied from 10 to 50 with an increment
of 10. Based on the results shown in Figure 7, we choose the
network with 10 first layer nodes and 30 second layer nodes
(RMSE of 2.73◦).

While the optimal single and two hidden layer networks
perform well with low RMSE values relative to the joint an-
gle ranges (Figure 6 and 7 versus Figure 5), we use the two
hidden layer network over the single hidden layer network in
the remainder of this work.

4.2 Comparison of Regression Models
Figure 8 summarizes the performance of our linear (LR),

Quadratic (QR) , Support Vector (SVR) , Random Forest
(RFR) and neural network regression (NN) models, reported



Fig. 7. RMSE for two hidden layer neural networks as a function of
hidden layer nodes.

as the RMSE values of the models applied to the test data and
averaged over the fourteen joint angles. As shown, QR, SVR,
RFR, and NN produce markedly better estimations over LR
(smaller RMSE is better).

For each model, as the number of sensors increases, the
RMSE values exhibit a declining trend as expected. Of note
is the fact that even with only four sensors, the NN produces
results that are better than the ten-sensor models of LR, and
QR. The results of NN are slightly better than RFR, and SVR
model. With the number of sensors increases, the difference
between NN, RFR, and SVR model is becoming smaller. As
such, we deem the NN model with four sensors as the best
model to deploy with the observed data, as it provides a fa-
vorable trade-off between simplicity and test accuracy. As
shown in Table 2, this results suggests the use of NN model
with strain sensors S6, S7, S8, and S9.

4.3 Insights into the Joints
Figure 9 provides a more detailed view of the RMSE

values. In particular, Figure 9 shows - for each joint - the
RMSE values for the five regression models for configura-
tions of ten sensors as well as four sensors1. For most joints,
the NN model produces lower RMSE values. Moreover, for
the proposed four-sensor configuration (Figure 8 right), the
maximum RMSE for the NN is observed at J3 and J6. Inter-
estingly, these two joints also result in the worst RMSE val-
ues for LR and QR. And even more interestingly, these joints
are also responsible for producing the worst RMSE values
for the ten-sensor configuration (Figure 8 left). On the other
hand, for RFR and SVR, this observation is reversed. For
the four-sensor configuration, for J3, RFR and SVR exhibit
better performance over NN. Likewise, when the number of
strain gauges is ten, RFR and SVR preform slightly better
than NN. This observation offers the insight that combining
different regression algorithms using ensembles with respect
to different joints may further improve the overall accuracy
of our approach.

Figure 10 shows the R2 values for the five regression
models over the different joints. In this case, the higher the
R2, the better the improvement in the prediction model, com-
pared to the mean model. As seen, the NN model is the best
when it comes to explaining the variation in the data.

1Note that Figure 8 reports an average RMSE over these joints.

5 Conclusions
This work presents a trainable instrumented glove that

is capable of predicting the fourteen joint angles on a hand
using as few as four strain gauges. The long term goal of this
study is to enable wearable gloves that can be used in factory
settings to monitor workers’ hand usage over extended peri-
ods of time. The proposed algorithms and prototype system
offer a step toward this goal.

During deployment, hand pose prediction that relies
solely on strain readouts has the advantage of not being re-
stricted by bulky hardware and other impediments common
to optical sensing systems such as object occlusions and
lighting. Our work, however, takes a significant advantage
of the optical tracking system by offering a short training
phase that allows the determination of a robust mapping from
the physical strain space to an optically captured joint angle
space. The optical tracking is only confined to the training
phase, thereby making the proposed system usable during
deployment.

Our work has demonstrated that a training duration as
short as 3 minutes provides sufficient data to learn a useful
mapping from the strain gauges onto the joint angles, thereby
making the proposed system practically viable in real-world
settings.

While our work uses conventional strain gauges for the
development of the methodology, the same infrastructure and
algorithmic approach can be immediately adopted for use
with more advanced strain sensors with smaller footprints or
with those using soft materials and continuous electronic cir-
cuitry. We intend to explore this direction as the immediate
next step.

5.1 Limitations and Future Work:
Our current study is limited to the prototype glove that

includes both sensing and tethered data transmission. An
immediate improvement would be to incorporate wireless
data transmission. This setup would include a data receiving
hardware that connects to the computer system following the
same hand tracking algorithms presented in this paper.

Another future direction involves extending glove usage
and data collection over durations measured in hours. This
way, we can investigate the performance of our hand pose
tracking approach for actual use cases with long operational
times.

Finally, in future studies, we intend to improve the glove
ergonomics, as well as to explore using soft materials and
continuous electronic circuitry in the glove to improve com-
fort. We envision a glove system in which both sensing and
circuitry design is further informed by ergonomic considera-
tions.
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Fig. 8. Comparison between different regression models with varying numbers of target strain gauges.

Fig. 9. RMSE of the five regression models using 10 strain gauge data (left) or 4 strain gauge data (right).

Fig. 10. R2 of five regression models using 10 strain gauge data (left) or 4 strain gauge data (right).
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